Triton X-100 Characterization

Project: Innoculant
Authors: Ithihas Madala

Created at: 2020-07-13T15:42:21.407004+00:00

MONDAY, 7/13/2020

Aim:

To determine the concentration of Sorbic acid before and after the degradation protocol using Luminol- H_2O_2 -Triton X-100 chemiluminesence system.

Principle:

Under the optimal conditions, the standard curve was drawn up and quotas were evaluated. The linear range was $2 \times 10^{-4} \text{ g} \cdot \text{mL}^{-1} - 4 \times 10^{-2} \text{ g} \cdot \text{mL}^{-1}$ (w/v), and the detection limit was $3.97 \times 10^{-5} \text{ g} \cdot \text{mL}^{-1}$ Triton X-100 (w/v). The relative standard deviation was less than 4.73% for $2 \times 10^{-2} \text{ g} \cdot \text{mL}^{-1}$ (w/v) Triton X-100 (n = 7). This method has been applied to the determination of Triton X-100 in environmental water samples. The desirable recovery ratio was between 96%–102% and the relative standard deviation was 2.5%–3.3%. The luminescence mechanism was also discussed in detail based on the fluorescence spectrum and the kinetic curve, and demonstrated that Triton X-100-luminol- H_2O_2 was a rapid reaction.

Apparatus:

- 1. Ultra-weak luminescence analyzer
- 2. Sensitive PhotoMultiplier Tube (PMT)
- 3. Fluorescence Spectrophotometer

Reagents:

- 1. Luminol
- 2. Triton X-100
- 3. 1M NaOH Solution
- 4. 0.2M Na₂CO₃

Preparation of solutions:

- 1. Prepare the 0.01 mol·L⁻¹ **luminol stock solution** by dissolving 0.1772 g luminol with 5 mL 1 mol·L⁻¹ NaOH solution and doubled distilled water to 100 mL and store in 4°C.
- 2. Prepare the **working standard solutions of luminol** from the stock solution by appropriate dilutions with 0.2 mol·L⁻¹ Na₂CO₃ before use and pH adjusted to 12.5 with 1 mol·L⁻¹ NaOH.
- 3. Prepare a standard solution of Triton X-100 (8% w/v) by dissolving 8g Triton X-100 with doubly distilled water to 100 mL.
- 4. Prepare working standard solutions of Triton X-100 from the stock solution by appropriate dilutions.

Procedure:

- 1. Rapidly inject 100 μ L Triton X-100 (1 × 10⁻² g·mL⁻¹), 100 μ L H₂O₂ (0.4 mol·L⁻¹) and 100 μ L luminol (1.0 × 10⁻⁴ mol·L⁻¹) into the sample pool in the correct order.
- 2. Close the reaction door to maintain the reaction in the dark.
- 3. Immediately start recording the CL intensity. The CL intensity ΔI is calculated by $\Delta I = I_s I_0$, where I_s and I_0 are the CL signals in the presence and absence of Triton X-100, respectively.
- 4. Collect the CL signal and record consecutively within 100 seconds and plot the CL intensity-time curve (kinetic curve).